DETROIT (Bloomberg) -- In Jokkmokk, a tiny hamlet just north of the Arctic Circle in Sweden, where temperatures can dip to 50 below, Volvo Cars’ self-driving XC90 SUV met its match: frozen flakes that caked on radar sensors essential to reading the road. Suddenly, the SUV was blind.
“It’s really difficult, especially when you have the snow smoke from the car in front,” said Marcus Rothoff, director of Volvo’s autonomous-driving program. “A bit of ice, you can manage. But when it starts building up, you just lose functionality.”
After moving the sensors around to various spots on the front, Volvo engineers finally found a solution. Next year, when Swedish drivers take their hands off the wheel of leased XC90s in the world’s first public test of autonomous technology, the radar will be nestled behind the windshield, where wipers can clear the ice and snow.
As automakers race to get robot cars on the road, they’re encountering an obstacle very familiar to humans: Old Man Winter. Simple snow can render the most advanced computing power useless and leave vehicles dead on the highway. That’s why major players including Volvo Cars, owned by Zhejiang Geely Holding Group Co.; Google, a unit of Alphabet Inc.; and Ford Motor Co. are stepping up their efforts to prevent snow blindness.
'A lot of hype'
“There’s been a lot of hype in the media and in the public mind’s eye” about the technology for self-driving cars “being nearly solved,” said Ryan Eustice, an associate professor of engineering at the University of Michigan who is working with Ford on snow testing. “But a car that’s able to do nationwide, all-weather driving, under all conditions, that’s still the Holy Grail.”
The struggle to cure snow blindness is among a number of engineering problems still to be resolved, including training cars not to drive too timidly, causing humans to crash into them, and ethical dilemmas such as whether to hit a school bus or go over a cliff when an accident is unavoidable.
With about 70 percent of the U.S. population living in the snow belt, learning how to navigate in rough weather is crucial for driverless cars to gain mass appeal, realize their potential to reduce road deaths dramatically and overcome growing traffic congestion.
“If your vision is obscured as a human in strong flurries, then vision sensors are going to encounter the exact same obstacles,” said Jeremy Carlson, an IHS Automotive senior analyst who specializes in autonomy.
High-speed sensors
Driverless cars “see” the world around them using data from cameras, radar and lidar, which bounces laser light off objects to assess shape and location. High-speed processors crunch the data to provide 360-degree detection of lanes, traffic, pedestrians, signs, stoplights and anything else in the vehicle’s path. That enables it to decide, in real time, where to go.
Winter makes this harder. Snow can shroud cameras and cover the lane lines they must see to keep a driverless car on course. Lidar also is limited because the light pulses it emits reflect off flakes, potentially confusing a curtain of falling snow with something to avoid, causing the vehicle to hit the brakes.
Radar, which senses objects by emitting electromagnetic waves, is better. It also has the longest track record: It’s been used since 1999 in adaptive cruise control to maintain a set distance from other vehicles.